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Viscous eddies in a circular cone
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The flow of viscous incompressible fluid in a circular cone induced by a non-zero
velocity prescribed at the boundary within a ring 0 <a1 <r <a2 < ∞, where r is the
distance from the vertex, is considered in the limits of the Stokes approximation. In
the spherical coordinate system (r, θ, φ) with the origin at the vertex and the axis θ =0
coincident with the axis of the cone the velocity and pressure fields are represented
in the form of a Fourier series on the trigonometric system cos mφ. The solution is
constructed for each term by use of the Mellin transform. The contribution of each
term of the Fourier expansion to the local velocity field near the vertex is studied. The
kinematics of the local flows is illustrated by two examples. The flows are induced by
the motion of two and three equally spaced segments, respectively.

1. Introduction
Creeping flows of viscous incompressible fluid in the neighbourhood of singular

points of a rigid boundary are of traditional interest. Such flows may be considered
within the limits of the linear approximation (Stokes flow), since the inertial forces
are negligible in comparison with the viscous forces (Moffatt 1964a).

The Stokes flow in the neighbourhood of a smooth edge (a line of intersection
of two smooth surfaces) has been thoroughly studied. This problem can be traced
back to Goodier (1934) and Taylor (1962) who considered the flow induced in a
wedge by the steady motion of a wall in the tangential direction. The solution of
the two-dimensional problem of the Stokes flow induced in a corner with rigid sides
by a general motion at a large distance from the corner was presented by Dean &
Montagnon (1949). Later Moffatt (1964a, b) interpreted their results as follows: if
the corner is sufficiently acute, there exists an infinite sequence of eddies. Their
dimensions and the intensities decrease in geometric progression as the corner is
approached. Using the Mellin transform technique, he constructed the solution for
a particular example of flow excitation (Moffatt 1964b). The flow was induced by
the motion of segments (sleeves) situated at the walls. More recently, Moffatt &
Duffy (1980) studied the pressure-driven flow directed along the edge (Poiseuille flow)
and analysed the breakdown of the local similarity solution. The instantaneous Stokes
flow in a corner between two free surfaces under the action of gravity parallel to
the bisectrix was studied by Betelú et al. (1996). Neglecting the surface tension, they
found the range of angles in which the dominant term of the solution is independent
of gravity and represents a similarity solution of the second type, and thus a sequence
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of Moffatt eddies may exist. The breakdown of the local similarity solution in a
wedge formed by a rigid wall and a surface of constant shear stress was studied by
Kuhlmann, Nienhüser & Rath (1999).

The axisymmetric Stokes flow has also been studied extensively. First, the paper by
Wakiya (1976) should be mentioned. He studied the eigenfunction flows in a conical
domain and established that for the semi-angle of the cone less than about 80.9◦ the
first root of the eigenvalue equation is complex and consequently an infinite sequence
of eddies is induced near the apex. At about the same time Liu & Joseph (1978)
considered the axisymmetric flow in conical trenches and showed that a sequence
of toroidal eddies exists near the vertex provided the opening angle is less than
a critical value. Secondary flows between two cones, the inner one rotating, were
discussed by Moffatt (1980), paying particular attention to toroidal vortices, which
occur for a certain range of angles of the cones. Recently, Weidman & Calmidi (1999)
studied the axisymmetric instantaneous Stokes flow in a conical domain bounded
by a free surface. The fluid was acted upon by gravity parallel to the conical axis.
The range of angles was found for which the dominant term of the solution was
independent of gravity and exhibited properties qualitatively similar to those of the
steady axisymmetric flow in a rigid cone reported by Liu & Joseph (1978).

Thus there exists a large body of research into plane and axisymmetric Stokes flows
near a corner and conical singular points of a boundary. The situation with three-
dimensional flows is quite different. Although the mathematical aspects have been
thoroughly studied (see Kozlov, Maz’ya & Rossmann 2001 for further mathematical
details), there are only a few papers which deal with three-dimensional velocity fields
in such domains. The flow in a corner region was studied by Moffatt & Mak (1999)
under the assumption that the velocity field weakly varied along the edge. It was
shown that in a flow antisymmetric about the bisecting plane, the part of the velocity
oscillating with the distance from the edge dominates and thus the flow exhibits the
eddy structure. In symmetric flow, however, the non-oscillating part was dominant.
The same conclusion was drawn earlier by Sano & Hasimoto (1980) who considered
the flow in a corner driven by a Stokeslet. In recent years the domain of a trihedral
corner has been one of the more intriguing geometries. Hills & Moffatt (2000)
considered a more general problem. The domain was bounded by two fixed rigid
triangular ‘fins’ inserted into a circular cone and a rotating conical surface. In the
special case that the angle of the cone is γ = π/2, this domain turns into a semi-
infinite wedge. The authors focused their attention on the asymptotic flow near the
edge formed by the immovable fins and concluded that, provided the angle between
the fins is less than a critical angle, an infinite sequence of eddies would be generated
near the edge. More recently, Gomilko, Malyuga & Meleshko (2003) constructed
the solution of the boundary-value problem in a trihedral rectangular corner. The
flow was generated by the motion of a wall. The authors employed the method
of superposition, considering the corner as the intersection of three half-sectors of
a solid sphere with the centre at the vertex of the corner. Combining analytical
reasoning and numerical simulations, they confirmed the asymptotic analysis by Hills
& Moffatt (2000). It was also shown that, if the movable wall rotates about a centre
displaced from the vertex, the three-dimensionality of the flow becomes significant.
A stagnation line composed of both saddles and centres was found. Shankar (2000)
considered another problem. The flow in a semi-infinite wedge was generated by a
non-zero velocity distributed over the boundary within some strip 0 < a1 < r < a2 < ∞,
where r is a distance from the vertex. Particular attention was given to the existence
of eddies near the edge formed by two stationary planes. Thus the asymptotic flow
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(a) (b)

Figure 1. Geometry of the problem. Examples of the boundary condition: (a) the motion of
two identical segments symmetric about the axis of the cone, (b) the motion of three identical
equally spaced segments.

near the vertex of a trihedral corner induced by an arbitrary velocity applied at a
large distance from the vertex still remains a challenge. It is natural to expect that
such flow might represent a sequence of eddies even in the case that eddies do not
exist near the edges owing to the dominant role of the Poiseuille flow in a dihedral
corner (Moffatt & Duffy 1980).

In the present paper we consider a simplified problem. The steady Stokes flow in
a circular cone is induced by a non-zero tangential velocity prescribed at the conical
surface within a ring 0<a1 <r <a2 < ∞ (figure 1). The simplicity of the problem
allows us to concentrate our attention on the behaviour of the flow near the vertex.
In the spherical coordinate system (r, θ, φ) with the origin at the vertex and the axis
θ =0 coincident with the axis of the cone, the boundary condition is represented in
the form of a Fourier series on the trigonometric system cos mφ. The contribution of
each term of the Fourier expansion to the asymptotic flow near the vertex is studied
separately. By way of example we consider two flows induced by the motion of two
and three equally spaced segments of the ring a1 <r <a2 (figure 1). In the first case
the asymptotic flow near the vertex is determined by the dominant role of the term
at m = 2, while in the latter case by the term at m = 0.

When reproducing this forcing experimentally, the moving surfaces (sleeves) must
be made of elastic material, since the curvature changes with r . One might expect
that streamline patterns near the vertex similar to those presented here can also be
obtained using another type of fluid agitation. For example, the flow may be driven
by two or three equally spaced spheres situate in the fluid near the conical surface.

The paper is organized as follows: the formulation of the problem and the general
representation of its solution are given in § 2 for each term of the Fourier expansion



104 V. S. Malyuga

of the general boundary condition. The asymptotic flows near the vertex and far
away from both the vertex and the ring of excitation are discussed in § 3. Two
flows induced by more general distributions of the prescribed velocity, which include
infinitely many terms of the Fourier expansion, are studied in § 4. Some conclusions
mainly concerning the role of different terms of the Fourier expansion in the local
velocity field near the vertex are given in § 5. Appendix A contains the asymptotic
expansions of the associated Legendre functions for small angle and large degree,
and Appendix B contains the coefficients of the velocity field in an infinite cylinder,
which is the limiting case of the cone.

2. Statement of the problem and general representation of its solution

2.1. Problem formulation

Let us consider a three-dimensional creeping flow of an incompressible viscous fluid
in a cone of a circular cross-section 0 � r < ∞, 0 � θ � α, 0 � φ � 2π, where (r, θ, φ) is
the spherical coordinate system with the origin at the vertex of the cone. The flow is
governed by the Stokes equations

µ ∇2U = ∇ P, ∇ · U = 0, (2.1a, b)

where U and P are velocity and pressure fields, respectively, and µ is the shear
viscosity of the fluid.

The motion of the fluid is generated by a tangential velocity Ur distributed over a
region a1 � r � a2 of the boundary θ = α. The boundary condition for the component
Ur of the velocity vector is given as follows:

Ur =

{
fm(r) cos mφ at a1 � r � a2, θ = α, 0 � φ � 2π,

0 at r < a1 or r > a2, θ = α, 0 � φ � 2π,
(2.2)

with m = 0, 1, 2, . . . . Here fm(r) is an arbitrary smooth function. The other com-
ponents are prescribed to be zero over the whole boundary. In a more general case
the boundary condition can be represented in the form of Fourier series on the
complete trigonometric system cosmφ and sin mφ with m =0, 1, 2, . . . . Owing to the
circular geometry of the problem, the boundary condition fm(r) sin mφ can be readily
reduced to the boundary condition (2.2) through rotation of the coordinate system
φ = ψ + π/2m. In view of the linearity of the problem, a more general velocity can
be represented as a sum of the solutions of problem (2.1), (2.2) at various m.

2.2. General representation of the solution

First we consider a particular solution of equation (2.1), which is of a simple form,
and then progress to the general representation, which enables one to satisfy the
boundary conditions (2.2) with arbitrary function fm(r).

Because of the structure of the boundary conditions, we may seek a solution of the
form

P = µrλ−1 pm(θ, λ) cosmφ, Ur = rλ qm(θ, λ) cos mφ,

Uθ = rλ sm(θ, λ) cosmφ, Uφ = rλ tm(θ, λ) sinmφ,

}
(2.3)

where λ is an arbitrary parameter. The substitution of (2.3) into the governing
equations (2.1) provides the system of ordinary differential equations, from which the
unknown functions pm, qm, sm and tm can be found. Since these equations are rather



Viscous eddies in a circular cone 105

cumbersome and require additional manipulations, a more convenient way is to
use the representation of the velocity and pressure field in terms of three spherical
harmonics

P = µpλ−1,

U = ∇ × (rχλ) + ∇Φλ+1 +
λ + 2

2λ(2λ + 1)
r2∇pλ−1 − λ − 1

λ(2λ + 1)
rpλ−1,


 (2.4)

where Φλ+1, χλ and pλ−1 are three solid spherical harmonics of degrees λ + 1, λ and
λ−1, respectively. Representation (2.4) has a structure similar to the representation of
the velocity and pressure fields derived by Gomilko et al. (2003, (3.5)) from the well-
known Lamb’s solution of the Stokes problem in spherical coordinates (Lamb 1932).
The difference is that the solution by Gomilko et al. contained only the spherical
harmonics of integer degrees, which was caused by the polynomial dependence of
the boundary conditions on r . For the problem under consideration it is necessary
to take the spherical harmonics of arbitrary complex degrees. It is evident that
representation (2.4) remains valid for complex λ.

The spherical harmonics can be chosen in the following form:

Φλ+1 = X(1)
m (λ) rλ+1 P −m

λ+1(cos θ) cos(mφ),

χλ = X(2)
m (λ) rλ P −m

λ (cos θ) sin(mφ),

pλ−1 = X(3)
m (λ) rλ−1 P −m

λ−1(cos θ) cos(mφ),


 (2.5)

with three unknown coefficients X(1)
m , X(2)

m and X(3)
m , which depend on the parameter λ.

Here P −m
ν (cos θ) denotes the associated Legendre functions of the first kind.† Now,

substituting (2.5) into (2.4) and comparing the result with representation (2.3), one
can obtain the following relations for the unknown functions:

pm = X(3)
m P −m

λ−1(cos θ),

qm = (λ + 1)X(1)
m P −m

λ+1(cos θ) +
λ − 1

2(2λ + 1)
X(3)

m P −m
λ−1(cos θ),

sm = X(1)
m P −m ′

λ+1 (cos θ) + X(2)
m

m P −m
λ (cos θ)

sin θ
+

λ + 2

2λ(2λ + 1)
X(3)

m P −m ′
λ−1 (cos θ),

tm = −X(1)
m

m P −m
λ+1(cos θ)

sin θ
− X(2)

m P −m ′
λ (cos θ) − λ + 2

2λ(2λ + 1)
X(3)

m

m P −m
λ−1(cos θ)

sin θ
.




(2.6)

Here and in what follows the prime denotes a derivative with respect to θ .
The integration of (2.3) with respect to the parameter λ along a contour parallel to

the imaginary axis provides a representation of the solution in the form of the inverse
Mellin transform, which allows one to satisfy the general boundary condition (2.2):

P =
µ cos mφ

2πi

∫ σ+i∞

σ−i∞
rλ−1 pm(θ, λ) dλ, Ur =

cosmφ

2πi

∫ σ+i∞

σ−i∞
rλ qm(θ, λ) dλ,

Uθ =
cosmφ

2πi

∫ σ+i∞

σ−i∞
rλ sm(θ, λ) dλ, Uφ =

sin mφ

2πi

∫ σ+i∞

σ−i∞
rλ tm(θ, λ) dλ.




(2.7)

† The associated Legendre functions of negative integer order −m are used. This choice will
allow us to avoid additional mathematical treatments at integer values of λ, at which the functions
of positive order become identically zero: P m

n (cos θ ) ≡ 0, m = n + 1, n + 2, . . . .
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Here σ is chosen so that the integral
∫ ∞

0
r−σ−1 U dr exists. Since the velocity prescribed

at the boundary is non-zero only within a finite strip away from the vertex, the velocity
in the cone vanishes both at the vertex and at infinity, say |U | =O(rσ1 ), r → 0, σ1 > 0
and |U | =O(rσ ∗

1 ), r → ∞, σ ∗
1 < 0 (σ1 and σ ∗

1 will be found later). It is evident that σ

can be any real constant from the interval (σ ∗
1 , σ1).

2.3. Satisfaction of the boundary condition

The unknown coefficients X(1)
m , X(2)

m and X(3)
m are to be determined from the boundary

conditions (2.2). The Mellin transform taken at the boundary θ = α provides the
following linear algebraic system:

qm(α, λ) =

∫ a2

a1

fm(r) r−λ−1dr ≡ Fm(λ),

sm(α, λ) = 0,

tm(α, λ) = 0.




(2.8)

The unknown coefficients are determined from this system as follows:

X(i)
m (λ) = Fm(λ)

∆(i)
m (λ)

∆m(λ)
, i = 1, 2, 3, (2.9)

where the determinant ∆m and the algebraic adjuncts ∆(i)
m are

∆m = (λ + 1) P −m
λ+1 ∆(1)

m (λ) +
λ − 1

2(2λ + 1)
P −m
λ−1 ∆(3)

m (λ), (2.10)

∆(1)
m =

λ + 2

2λ(2λ + 1)

[
P −m ′
λ−1 P −m ′

λ − m2

sin2 α
P −m
λ−1 P −m

λ

]
,

∆(2)
m =

λ + 2

2λ(2λ + 1)

m

sin α

[
P −m ′
λ+1 P −m

λ−1 − P −m
λ+1 P −m ′

λ−1

]
,

∆(3)
m = −P −m ′

λ+1 P −m ′
λ +

m2

sin2 α
P −m
λ+1 P −m

λ .




(2.11)

Here and in what follows, for brevity, the constant argument cos α of the associated
Legendre functions is omitted.

3. Asymptotic behaviour of the flow at small and large r

3.1. Flow near the vertex of a cone

The behaviour of the flow near the vertex is characterized by the location of the roots
of the equation

∆m(λ) = 0 (3.1)

in the right-hand half of the complex plane, at which the integrands in (2.7) have
poles, which are generally simple. Completing the contour of integration in (2.7) in
the half-plane Reλ> 0 at a large distance from the origin and applying the theorem
of residues, we obtain a representation for the velocity in the domain r < a1 in the
form of the sum of residues. Since λ1 (the solution of equation (3.1) with a smallest
positive real part) determines the asymptotic behaviour of the flow near the vertex,
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2α (deg.) m ξ1 η1 ln ρ1 ln ω1

0 0 8.93 2.94 0.00 9.56
1 5.14 2.25 0.00 7.19
2 7.83 2.62 0.00 9.37

10 0 8.85 2.93 0.19 9.49
1 5.05 2.24 0.25 7.09
2 7.75 2.62 0.21 9.29

30 0 8.68 2.89 0.57 9.45
1 4.90 2.20 0.75 7.01
2 7.61 2.58 0.64 9.27

50 0 8.52 2.80 0.98 9.56
1 4.78 2.12 1.30 7.10
2 7.50 2.50 1.10 9.45

2α (deg.) m ξ1 η1 ln ρ1 ln ω1

90 0 8.23 2.46 2.00 10.49
1 4.63 1.79 2.75 8.11
2 7.41 2.18 2.27 10.70

110 0 8.10 2.19 2.76 11.63
1 4.59 1.52 3.97 9.50
2 7.42 1.91 3.16 12.23

130 0 7.99 1.79 3.98 14.00
1 4.58 1.10 6.47 13.06
2 7.48 1.51 4.71 15.52

150 0 7.90 1.14 7.19 21.70
1 4.33 0.00 – –
2 7.58 0.81 10.12 29.29

Table 1. Values of ξ1 = 2ασ1 and η1 = 2ατ1, where λ1 = σ1 + iτ1 is the principal root
of equation (3.1). Length and intensity scale factors for the eddies.

the local velocity and pressure take the form

P loc = µ rλ1−1 pm(θ, λ1) cos mφ, Uloc
r = rλ1 qm(θ, λ1) cos mφ,

Uloc
θ = rλ1 sm(θ, λ1) cos mφ, Uloc

φ = rλ1 tm(θ, λ1) sin mφ,

}
(3.2)

where the functions pm, qm, sm and tm are given by (2.6) but the coefficients are now
defined as follows:

X(i)
m (λ) = −2Fm(λ)

∆(i)
m (λ)

∆′
m(λ)

, i = 1, 2, 3. (3.3)

Here the prime denotes the derivative. If λ1 is complex, the real part of (3.1) is
understood to be relevant.

In the axisymmetric case (m = 0) the characteristic equation (3.1) is considerably
simplified and takes the form

(λ − 1) λPλ−1 P ′
λ+1 = (λ + 1) (λ + 2) P ′

λ−1 Pλ+1. (3.4)

The root λ= 1 is evident. Since it is also a zero of the numerator in (2.6), it gives only
a removable singularity of the integrands.

The characteristic equation (3.1) has both complex and real roots. The first
eigenvalue λ1 = σ1 + iτ1, i.e. the eigenvalue with smallest positive real part, is of
particular interest. The values of ξ1 = 2ασ1 and η1 = 2ατ1 at various α are presented
in table 1. At m =0 and m =1 they may be compared with the corresponding values
of ξ1 and η1 in a two-dimensional corner in the symmetric and antisymmetric cases,
respectively, given in Moffatt (1964a, table 1) for 2α < 180◦. Indeed, at m =0 the flow
in any plane passing through the axis of the cone is two-dimensional and symmetric,
and therefore it is expected to bear a resemblance to the symmetric flow in a two-
dimensional corner of the same angle. At m = 1 the plane sin φ =0 is the plane of
symmetry. The flow in it is two-dimensional and antisymmetric. Thus it should be
akin to the antisymmetric flow in the plane corner. As can be seen from table 1, in
both the cases ξ1 is slightly higher in a cone. As α increases, ξ1 decreases in a cone
and increases in a corner. Thus the difference is most distinct at low values of α.
Obviously at m � 2 a comparison with two-dimensional flows is meaningless, since
the three-dimensionality of the boundary conditions becomes significant.
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m 0 1 2 3 4 5

2αc (deg.) 161.7 148.9 157.2 161.1 163.5 165.2
ξ1 7.86 4.60 7.63 10.64 13.66 16.69

Table 2. Critical angles 2αc and the corresponding values of ξ1.

(a) (b)

m = 3 m = 2

m = 1

Figure 2. Centrelines of eddies. (a) The general view at m= 2. (b) The centrelines at
m= 1, 2, 3 situated in the planes φ = π/2m.

Similarly to the case of a plane corner, λ1 is complex if α is less than some critical
value and real if α exceeds it. This circumstance leads to the identical conclusion.
Providing α is less than a critical value, there exists a sequence of eddies near the
vertex. At m = 0 and m =1 the critical angles (table 2) are greater only by 6◦ and 3◦,
respectively, than the critical angles of the symmetric and antisymmetric flows in a
corner.

If m > 0, the centrelines of the eddies lie in the planes φ = π(2k − 1)/2m ≡ φk ,
k = 1, 2, . . . , m, in which the two components of the local velocity Uloc

r = Uloc
θ ≡ 0.

Following the analysis by Moffatt (1964), it is not difficult to show that the third
component Uloc

φ has zeros at

r = r0e
−(ε+nπ)/τ1 ≡ rn, (3.5)

where r0 is a length scale (r0 	 a1) and ε is introduced so that

sin ε =
Re

(
Am r

λ1

0 t̃m
)

∣∣Am r
λ1

0 t̃m
∣∣ , cos ε = −

Im
(
Am r

λ1

0 t̃m
)

∣∣Am r
λ1

0 t̃m
∣∣ . (3.6)

Equation (3.5) leads to the following conclusion. In the direction towards the vertex
the dimensions of successive eddies decrease in geometric progression with ratio
ρ1 = eπ/τ1 , which depends only on the angle 2α and m.

Since ε is a function of θ , relation (3.5) is the equation of the centrelines of eddies
in the planes φ = φk . These lines calculated numerically at m =2 are represented in
figure 2(a). The three-dimensionality of the domain is manifested in the curvilinear
shape of the centrelines. In figure 2(b) the centrelines at m =1, 2, 3 are shown in
planes φ = π/2m. The scale factors r0 are chosen so that the lines intersect at the axis
of the cone. The greater is m, the higher is the end of the line, which means that the
curvature grows with m.
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2α (deg.) m ξ1

10 3 10.24
4 12.63
5 14.97

2α (deg.) m ξ1

90 3 10.03
4 12.58
5 15.08

2α (deg.) m ξ1

150 3 10.48
4 13.36
5 16.21

Table 3. Values of ξ1 at higher m.

(a) (c)

(b) (d)

Figure 3. Streamline patterns. (a) m= 1, 2α = 30◦; (b) m= 1, 2α = 130◦; (c) m= 2, 2α = 30◦;
(d) m= 2, 2α = 130◦.

The intensities of eddies also decrease in geometric progression. The ratio of
intensities of successive (towards the vertex) eddies is ω1 = eπσ1/τ1 . The logarithms
of ρ1 and ω1 are given in table 1. Comparison of their values with those in the
corresponding two-dimensional flows (Moffatt 1964a), shows that ρ1 is lower in a
cone. Thus the dimensions of the eddies decrease as the vertex is approached more
slowly. The intensity scale factor ω1 is higher in a cone provided the angle α is
sufficiently acute and lower as α increases.

For m > 0, ξ1 grows with increasing m. Comparing its values at higher m given in
table 3 with the data in table 1, we may conclude that, when considered as a function
of m, ξ1 = ξ1(m) obeys the inequality

ξ1(1) < ξ1(2) < ξ1(0) < ξ1(3) < ξ1(4) < . . . . (3.7)

Hence, in the case of a general boundary condition represented in the form of Fourier
series of the trigonometric functions cos mφ, the term at m =1 will dominate near
the vertex or if this term is missing in the Fourier expansion, the term at m = 2 will
dominate.

The streamline patterns at m =1 and m =2 in cones of angles 2α = 30◦ and 2α =
130◦ are shown in figure 3. When the angle is acute, several successive eddies are
observed, since the length scale factor ρ1 is still sufficiently small. In the case 2α =130◦
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the streamlines of only one eddy are represented, since the dimensions of eddies
decay very rapidly as the vertex is approached (ρ1 = e6.468 at m =1). Owing to the
symmetries of the local velocity, all the streamlines are closed. For example, at m = 2
the streamlines situated in the first quarter (0 � φ � π/2) are symmetric about the
plane φ = π/4, in which the centrelines of eddies lie.

3.2. Special cases

In the particular case of 2α = π-the cone turns into a half-space. The characteristic
equation (3.1) is considerably simplified in this case. The eigenvalue λk can be found
explicitly. Indeed, the associated Legendre functions and their derivatives take the
following values (Abramowitz & Stegun 1965):

P µ
ν (0) =

2µ

√
π

�
(

1
2
(ν + µ + 1)

)
�

(
1
2
(ν − µ) + 1

) cos
π

2
(ν + µ),

P µ ′
ν (0) = −2µ+1

√
π

�
(

1
2
(ν + µ) + 1

)
�

(
1
2
(ν − µ + 1)

) sin
π

2
(ν + µ),




(3.8)

where � denotes the gamma function. Substituting (3.8) into (2.10), (2.11) and taking
into account that the roots of ∆m which are also the roots of ∆(i)

m do not contribute
to the local solution, we obtain the characteristic equation in the form

λ − m

λ
�

(
1
2
(λ − m)

)
sin

(
1
2
π(λ − m)

)
= 0 (3.9)

with the roots

λ = m + 2k, (3.10)

where k =0, 1, . . . at m > 0 and k = 1, 2, . . . at m =0.
Again, the local solution at m =1 dominates. At m = 0 and m =2 the first

eigenvalues are equal and thus in a general case the leading role of one of these
terms in the local velocity can be determined only by its leading role in the Fourier
expansion of the boundary condition. The streamlines of the flow at m = 2 are
represented in figure 4(a). Evidently, they are non-closed. No eddies appear in this
case, since the critical angle 2αc < 180◦.

Another special case is α → 0. The cone degenerates into an infinite cylinder. Taking
the asymptotic values of the associated Legendre functions and their derivatives
(Appendix A), the recurrence relations for the Bessel functions (Abramowitz &
Stegun 1965) and the substitution γ = λα, we have from (2.10), (3.1) the characteristic
equation

2 Jm−1 Jm+1(Jm + γ J ′
m) − γ Jm(J ′

m−1 Jm+1 + Jm−1 J ′
m+1) = 0. (3.11)

Here the constant argument γ of the Bessel functions is omitted for brevity. The
primes indicate differentiation with respect to the whole argument. Equation (3.11)
first appeared in the fluid mechanics literature in Shankar (1997). The relevant
solution (with a smallest positive real part) is complex. The values of ξ1 = 2 Reγ1 and
η1 = 2 Imγ1 are given in table 1. They agree well with the eigenvalues presented in
Shankar (1998). The eddies in the cylinder are all of the same dimension but their
intensities decrease away from the region where a non-zero velocity is applied to the
boundary. The three-dimensionality of the flow manifests itself in the greater values
of the damping factor ω1 than was observed in a layer between two rigid planes
(Moffatt 1964a).
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(a)

(b)

Figure 4. Streamline patterns at m= 2. (a) 2α = π, the cone turns into a half-space;
(b) α → 0, the cone turns into a cylinder.

The velocity field may be conveniently given in a cylindrical coordinate system
(ρ, φ, z). For this purpose the origin of the system is chosen in the axis of the
cone, which coincides with the Oz-axis, at a distance r0 from the vertex. Fixing the
cross-section of unit radius in the plane z = 0 and letting α tend to zero, we obtain
the following relations between the spherical and cylindrical coordinates:

r ∼ z + r0, θ ∼ αρ, (3.12)

where r0 ∼ 1/α. Then the following asymptotic relation is valid:(
r

r0

)λ

∼
(

1 +
z

r0

)γ /α

∼ eγ z. (3.13)

For the velocity components we have

Uρ ∼ Uθ, Uz ∼ Ur. (3.14)

Then, from (3.2), (2.6), in view of (A 1), (A 2) and (3.12), we have the following
expressions for the velocities in the infinite cylinder valid in the negative part (z < 0),
when the excitation is applied in the positive part (z > 0):

Uρ = uρ(ρ, γ1) eγ1z cos mφ, Uφ = uφ(ρ, γ1) eγ1z sin mφ,

Uz =
[
Y (1)

m (γ1) Jm(γ1ρ) − Ym(γ1) ρ J ′
m(γ1ρ)

]
eγ1z cos mφ,

}
(3.15)

where

uρ + uφ = Y (2)
m (γ1) Jm+1(γ1ρ) + Ym(γ1) ρ J ′

m+1(γ1ρ),

uρ − uφ = Y (3)
m (γ1) Jm−1(γ1ρ) − Ym(γ1) ρ J ′

m−1(γ1ρ).

}
(3.16)
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The coefficients Ym, Y (i)
m are given in Appendix B. The streamlines of this flow at

m =2 are illustrated in figure 4(b). As already observed, the eddies are all of the
same size but their intensities decrease with distance from the region of a non-zero
boundary velocity.

3.3. Flow at a large distance from the vertex

To study the flow at a large distance from the vertex and from the region of excitation
of the flow (r � a2), the contour of integration in (2.7) should be completed in the
left-hand half-plane Reλ< 0 at a large distance from the origin. This asymptotic flow
is governed by location of roots of (3.1) with negative real part. It should be noted
that at λ=0 and λ= −1/2 the integrands in (2.7) have only removable singularities.

The following property of the associated Legendre functions:

P −m
λ (cos α) = P −m

−λ−1(cosα) (3.17)

allows one to relate the roots of (3.1) with positive and negative real parts. It follows
from (2.10), (2.11), in view of (3.17), that

∆m(−λ − 1) = − λ

λ + 1
∆m(λ). (3.18)

Equation (3.18) suggests that the roots of (3.1) are symmetric about the straight line
Reλ= −1/2, i.e. if λ= λk is a root of (3.1), then λ= −λk − 1 ≡ λ∗

k is also a root of
this equation. This fact, which is valid for Stokes flows in arbitrary conical domains
(Kozlov et al. 2001, Theorem 5.2.1), comprises the principal difference between two-
dimensional and three-dimensional flows. In a plane corner (Moffatt 1964a) the roots
of the characteristic equation are symmetric about the imaginary axis Reλ=0. If
angle α exceeds the limits 90◦ and  126◦ for the antisymmetric and symmetric
flows, respectively, then σ1 < 1, and the Stokes approximation becomes invalid at a
large distance from the corner, since the Reynolds number Re =O(rσ ∗

1 +1) = O(r−σ1+1)
increases with distance r . In a cone Re =O(rσ ∗

1 +1) = O(r−σ1 ). Thus at r � a2 the
contribution of the inertial forces may be neglected at any m � 0 and 0< 2α < 360◦.

4. Two examples of more general boundary conditions

When the boundary condition includes more than one term of the Fourier expansion
in φ, the flow becomes more complicated. The general properties of such flows can
be demonstrated with two typical examples, namely the flows induced by the motion
of two and three equally spaced pieces of the strip a1 � r � a2 (flows A and B,
respectively, see figure 1). To be specific, a1 = 1, a2 = 1.1 are taken. These problems
have the following non-zero boundary conditions within this strip. Flow A:

Ur = 1, 1
4

π < φ < 3
4

π ∪ 5
4

π < φ < 7
4

π. (4.1)

Flow B:

Ur = 1, 1
6

π < φ < 3
6

π ∪ 5
6

π < φ < 7
6

π ∪ 9
6

π < φ < 11
6

π. (4.2)

The rest of the conical surface is fixed.
The non-zero Fourier coefficients of the boundary velocities are

f0 = 1
2
, f2(2k−1) = (−1)k

2

(2k − 1)π
, k = 1, 2, . . . (4.3)
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r = 1.1

r = 1

φ = π
φ = π /2

r = 1.1

r = 1

φ = 4 π/3
φ = π

(a)

(b)

(c)

(d)

Figure 5. Streamline patterns, 2α = 30◦. (a) Flow A. The general view. (b) Flow A. An
enlarged view of the fourth eddy. (c) Flow B. The general view. (d ) Flow B. An enlarged view
of the third and fourth eddies.

for flow A and

f0 = 1
2
, f3(2k−1) = (−1)k

2

(2k − 1)π
, k = 1, 2, . . . (4.4)

for flow B. In both cases the dominant term (m =1) is absent and hence the
contribution of the terms m =0, 2, 3 can be compared.

The general view of streamline patterns of flows A and B is represented in
figures 5(a) and 5(c), respectively. In what follows the eddies are numbered starting
with the primary (first) eddy, which is situated near the strip of non-zero boundary
velocity. In the region of the eddies with higher numbers (second, third etc.) the
Mellin integrals in (2.7) may be evaluated by the theorem of residues. For a cone of
acute angle (in what follows 2α = 30◦ is specified), the corresponding power series in
r converge very rapidly. For example, at m = 3, σ1 = 19.31 and σ2 = 29.99, whereas
at m =9 (the third term in the Fourier expansion of flow B) σ1 = 45.76. In the third
eddy it is sufficient to take into account only the first eigenvalue λ1 of the first two
terms in the Fourier expansion.
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In the region of the primary eddy, employment of the theorem of residues is
inefficient to evaluate the Mellin integral in (2.7). A more appropriate procedure
consists in the reduction of the contour integrals (2.7) to the real Fourier integrals.
This technique is well-known. Since the contour of integration is parallel to the
imaginary axis, dλ= i dτ . The Mellin transform of the Fourier coefficients fm is

Fm(λ) =
fm

λ

(
a−λ

1 − a−λ
2

)
. (4.5)

Separating the real and imaginary parts in (2.7) and taking into account that the real
part is an even function of τ , we can rewrite the velocity as follows:

Ur =

∞∑
m=0

fm

π
cos mφ

[(
r

a1

)σ ∫ ∞

0

(R(θ, τ ) cos τκ1 − T (θ, τ ) sin τκ1) dτ

−
(

r

a2

)σ ∫ ∞

0

(R(θ, τ ) cos τκ2 − T (θ, τ ) sin τκ2) dτ

]
, (4.6)

where

R(θ, τ ) = Re

(
qm(θ, λ)

λFm(λ)

)
, T (θ, τ ) = Im

(
qm(θ, λ)

λFm(λ)

)
, κi = ln

r

ai

. (4.7)

The other components can be obtained by the same procedure.
The highest numerical error occurs in the vicinity of the lines, where the prescribed

boundary velocity is discontinuous. Since the local solutions near these lines are
known, it is possible in principle to get rid of the singularity (see, for example,
Meleshko 1996), which allows one to considerably improve the satisfaction of the
boundary conditions in this region. Since this procedure is useful only in the vicinity
of the points of discontinuity and has an insignificant effect on the flows near the
vertex and in the interior of the cone, it is outside the scope of this paper. In
the Fourier series (4.6) 100 non-zero terms were retained. Two components Uθ and
Uφ give identical zero at the boundary. For the component Ur , even in the small
neighbourhood (r = 0.999) of the line r = a1 = 1, the numerical error does not exceed
3% of the velocity prescribed at the boundary.

As a consequence of the velocity field symmetries, the streamlines of flows A and B
are symmetric about the planes φ = πk/2 and φ = πk/3, respectively. Figures 5(a) and
5(c) illustrate only the streamline patterns situated in the quarter π/2 <φ < π and in
the one sixth of the cone π < φ < 4π/3. The streamline involved in the primary eddy
has a complicated spiral shape. As it approaches the plane φ = π/2 (figure 5a), the
coils widen. Then it approaches the stationary part of the conical surface 3π/4 < φ < π,
and the coils converge. The streamline involved in the primary eddy of flow B has
a similar geometry. It should be mentioned that streamlines of spiral shape near
a smooth edge have been reported earlier, e.g. Shankar (1997, 2000), Meleshko,
Malyuga & Gomilko (2000).

In the eddies of higher numbers of flow A, where the second term (m = 2) of the
Fourier expansion plays the dominant role, the streamlines wind round a line situated
nearly in the plane φ = 3π/4 (figure 5b). In flow B the dominance of the axisymmetric
term (m = 0) is manifested in the appearance of comparatively large regions in which
the streamlines wind nearly round the circle r = const, θ =const (figure 5d). The
higher is the number of an eddy, the more tightly wound are the spirals.
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5. Conclusions
The velocity and pressure fields of the Stokes flow in a circular cone driven by

a non-zero velocity applied to the boundary within the ring 0 <a1 < r < a2 < ∞ are
represented in the form of Fourier series on the trigonometric system cos mφ. The
problem is considered separately for each term of the Fourier expansion and the
solution is constructed in the form of the Mellin integral.

The transcendental equation for the eigenvalues, which determine the asymptotic
flow in the neighbourhood of the vertex, is obtained. The numerical analysis shows
that at any m there exists a critical value of the opening angle, below which the first
pair of eigenvalues are complex and above which they become real. This circumstance
leads us to a conclusion similar to that drawn by Moffatt (1964a, b) for the two-
dimensional flow in a plane corner. At any m, providing α is less than the critical
value, there exists a sequence of eddies near the vertex.

Being considered as a function of m, the real part of the first eigenvalue ξ1 = ξ1(m)
obeys the inequality ξ1(1) < ξ1(2) < ξ1(0) < ξ1(3) < ξ1(4) < . . . . Hence, when the Fourier
expansion of the velocity prescribed at the boundary includes several terms, the term
at m =1 will dominate near the vertex. If this term is missing in the Fourier expansion,
the term at m =2 will dominate. If both the terms are missing, the axisymmetric term
(m = 0) will play a leading role.
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and Professor J. B.M. Middelburg from the Centre for Estuarine and Marine Ecology,
Yerseke for their hospitality and aid. My thanks also go to Professor H.K. Moffatt
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Appendix A
As α → 0, Reλ→ ∞ and Reλα = O(1), the following asymptotic representations

of the associated Legendre functions and their derivatives is valid (Gradshteyn &
Ryzhik 2000):

λmP −m
λ+k(cos α) = Jm(λα) − (2k + 1)

2
Jm+1(λα) α + O(α2), (A 1)

λm−1P −m ′
λ+k (cos α) = J ′

m(λα) − (2k + 1)

2

(
J ′

m+1(λα) +
1

λα
Jm+1(λα)

)
α + O(α2), (A 2)

where k = −1, 0, 1; and Jµ, J ′
µ denote the Bessel function of the first kind and its

derivative with respect to the whole argument, respectively.

Appendix B
The coefficients of the velocity field in an infinite cylinder are

Ym(γ ) = −γ
(
Y (1)

m + 1
2

(
Y (2)

m − Y (3)
m

))
, Y (i)

m (γ ) = Gm(γ )
d (i)

m (γ )

d ′
m(γ )

, i = 1, 2, 3. (B 1)
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The determinant dm and the algebraic adjuncts d (i)
m are given as follows:

d (1)
m = Jm−1(γ ) Jm+1(γ ) − 1

2

(
d (2)

m (γ ) − d (3)
m (γ )

)
, d (2)

m = γ Jm−1(γ ) J ′
m+1(γ ),

d (3)
m = −γ J ′

m−1(γ ) Jm+1(γ ), dm = γ Jm−1(γ ) J ′
m(γ ) Jm+1(γ ) + Jm(γ ) d (1)

m (γ );

}
(B 2)

Gm(γ ) = −2

∫ b2

b1

gm(z) e−γ z dz (B 3)

where gm(z) is a non-zero velocity Uz prescribed at the boundary ρ = 1 within the
strip b1 � z � b2.
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